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Abstract
We present a quantum cluster solver for the spin-S Heisenberg model on a two-
dimensional lattice. The formalism is based on the real-space renormalization
procedure and uses the lattice point group-theoretical analysis and non-Abelian
SU(2) spin symmetry technique. The exact diagonalization procedure is used
twice at each renormalization group step. The method is applied to the spin-
half antiferromagnet on a square lattice, and a calculation of local observables
is demonstrated. A symmetry-based truncation procedure is suggested and
verified numerically.

PACS numbers: 05.10.Cc, 02.70.−c

1. Introduction

Low-dimensional magnetic systems are currently a subject of intensive experimental and
theoretical work. Cluster methods, which approximate the physics of the infinite system by
solving the problem for a corresponding finite cluster, are the most frequently used theoretical
approaches, as they account short-range correlations on the scale of the cluster size. Numerical
standard methods in the field, such as quantum Monte Carlo (QMC), exact diagonalization
(ED) [1], and density matrix renormalization group (DMRG) [2, 3], are able to give essentially
exact results on limited size systems and form a versatile methodological triad in simulations
of model Hamiltonians.

Even though these techniques have had spectacular successes in calculating ground
state energies and many other properties of one-dimensional (1D) and two-dimensional
(2D) quantum spin systems [4–7] there is a problem with utilizing symmetries and good
quantum numbers of the Hamiltonian, which may be exploited to thin out the Hilbert space by
decomposing it into a sum of sectors. Common symmetries and conservation laws encountered
in spin systems are (i) Ising or XY symmetry (magnetization conservation Sz

tot = const),
(ii) point-group symmetry (parity, angular momentum conserved) and (iii) full SU(2)

symmetry (S2
tot conserved). Among these symmetries only the first is usually exploited in

numerical calculations. The full SU(2) spin symmetry is rather hard to implement, since
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it requires efforts similar to the diagonalization of the actual Hamiltonian to construct the
eigenstates of S2

tot. An implementation of non-Abelian SU(2) spin symmetry based on
Clebsch–Gordan transformations and elimination of quantum numbers via the Wigner–Eckart
theorem was performed for the interaction round a face (IRF) models in the framework of
the IRF-DMRG method [8]. This technique has been successfully applied to the spin-1/2
Heisenberg chain and, later, to the spin-1 and spin-2 Heisenberg chains [9]. The performant
DMRG method conserving a total spin quantum number has been suggested by McCulloch
and Gulasci [10, 11]. An application of SU(2) symmetries for the matrix product method
(MPM) closely related to the DMRG [12, 13] gives a rotationally invariant formulation valid
for spin chains and ladders [13, 14].

As for the lattice point symmetry, despite its importance in characterizing energy states
of a spin system, there appears to have been little previous work on the subject. Even though
an implementing this symmetry does not lead to a drastic reduction of a dimension of the
Hilbert space sector to be diagonalized, we can resolve properties as a function of additional
quantum numbers (irreducible representations of the point group). This circumstance might
be crucial for efficient truncation of the Hilbert space in algorithms based on the real-space
renormalization group (RSRG) procedure. This generates a motivation for the present paper,
namely, we present a finite cluster solver based on the RSRG scheme which allows us to
exploit both the continuous non-Abelian SU(2) symmetry and discrete symmetry of the lattice
point group in application to isotropic two-dimensional spin-S systems. As an example
of illustrating features of our method we consider the spin-1/2 Heisenberg antiferromagnet
(AFH) on a square lattice. This choice is motivated by two reasons. First, the physical
properties of the S = 1/2 AFH model on the infinite square lattice at T = 0 have been
much studied and calculated by various methods by many physicists [15, 16]. The focus has
generally been on the ground-state energy and staggered magnetization, although some other
quantities have also been computed (see [17], for example). Second, the underlying idea of
our approach was first developed by Lin and Campbell in the study of this model system
[18, 24]. Before moving on to the details, we discuss important aspects of finite-lattice
simulations using the ED method regarding the cluster geometry.

The method of exact diagonalization has been used on the best bipartite finite square
lattices with up to N = 38 vertices [25, 27]. On each of the set of finite lattices, the
Hamiltonian of the quantum spin model is diagonalized exactly to find the ground-state energy
and the ground-state eigenvector. The ground-state properties can then be calculated exactly.
The exact ground-state data for each physical property of the model on all finite lattices are
extrapolated against an appropriate inverse power of N to obtain an estimate of the property on
the infinite lattice at zero temperature [28]. Haan et al [30] showed that certain parallelogram
clusters could produce good results in finite-size exact diagonalization calculations. Later,
Betts et al developed a grading scheme of parallelogram tiles of the square lattice that could
generate the best finite clusters [27]. From a symmetry point of view, this approach has an
apparent flaw: the point symmetry of a parallelogram cluster does not match that of the infinite
square lattice.

In this respect, a renormalization-group (RG) approach suggested by Lin and Campbell
combining exact diagonalization results with a RG-type analysis seems to be more promising.
The basic idea of their calculations for 2D AFH on an n × n cluster (n is an odd integer) is to
divide this cluster into two parts: an inner (n − 2) × (n − 2) cluster and the perimeter (‘outer
ring’). The AFH model is firstly solved for the inner cluster and its ground state is mapped onto
a single-effective spin (all the excited states are thrown away). Thus, the problem is reduced
to an effective 1D AFH model in which spins on the outer ring experience antiferromagnetic
nearest-neighbour interactions and interact individually with the effective central spin. The
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latter plays the role of a staggered external magnetic field. The procedure is repeated for the
increasing values of n and demonstrates convincingly that the staggered magnetic long-range
order exists at zero temperature. We note especially that the lattice point symmetry holds for
all the clusters, and their ground state always has spin S = 1/2 (not a singlet) according to the
Lieb–Mattis theorem [31].

We offer to change the real-space RG strategy of the approach making it closer to DMRG
methodology. Our treatment begins by dividing a cluster into a central spin and its environment.
In the course of real-space RG iterations the environment increases (technical details are
discussed in the text) and we determine how coupling between the central spin and the
environment varies. Note especially that we address to the exact diagonalization procedure
twice at each RG step. The first use gives access to states of the environment and the second
one does the same to those of the whole cluster that provides its spectrum and observables
of interest. Within our RG framework, local results such as the energy per bond ε and the
staggered magnetic moment m are measured on the central site.

We have carried out the renormalization procedure through systems of size
√

17 × √
17,

and, in contrast to approach in Ref. [18], we keep not only the ground state. For small clusters
(
√

5 × √
5, 3 × 3,

√
13 × √

13) we use all of the excited states of the environment found by
exact diagonalization, whereas for the cluster of size

√
17 × √

17 we apply a symmetry-based
truncation procedure, retaining only the states with largest weight in the environment density
matrix. For this cluster we have compared the exact diagonalization result for ε and m with
those obtained via our renormalization group, and we regard the resulting better than 10−2%
agreement as support for the reliability of our calculations.

We note that several other methods to improve the RSRG calculations have been
previously formulated to study low-energy properties of spin lattice models. Among the most
important and successful ones, one may cite the real-space renormalization group with effective
interactions (RSRG-EI) [19], and the dressed cluster method (DCM) [20, 21]. The first method
is an improvement of the RSRG method originally proposed by Wilson. By considering
the blocks of lattice it extracts effective interactions between the blocks through the exact
diagonalization of dimers of blocks. Knowledge of the exact spectrum of the dimers enables
one to define interblock effective interactions via an effective Hamiltonian. This procedure
is iteratevely repeated to blocks of blocks providing at a very low cost reasonable estimate of
the energy per bond for 1D and 2D spin lattices. The second method (DCM) uses a single-
reference wavefunction as do the coupled cluster method (CCM) [22, 23]. This wavefunction
is used as a bath in which a finite cluster is embedded and treated exactly. The effect of
excitations occurring on the bonds around the cluster is taken into account through a dressing
of the cluster configuration interaction (CI) matrix. This approach gives results for the cohesive
energy of the same accuracy as the best QMC ones. The DCM can be seen as a convenient
approximation of the CCM. However, the problem is formulated as a diagonalization of a
dressed CI matrix instead of the resolution of a nonlinear system of equations.

The paper is organized as follows. The general formalism for two-dimensional spin-S
systems is introduced in the following section. In section 3 we apply the method to the AFH
model on a square lattice. Finally, our conclusions and an outlook are presented in section 4.

2. Two-dimensional isotropic Heisenberg spin-S system

2.1. Cluster states and observables

In the first step one must identify the cluster. As detailed above, care should be taken to ensure
that the cluster has the same point-group symmetry as the lattice. Since the calculation of
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antiferromagnetism requires bipartite clusters, we select a cluster with a bipartite environment
of the central site (the case of this violation will be illustrated in the example of the cluster√

13 × √
13).

The cluster Hamiltonian

Ĥ = J
∑
n�δ

�Sn
�Sn+�δ = Ĥ u + V̂ (1)

is composed of the term V̂ = J �S0
∑

�δ �S0+�δ describing interactions of the central spin �S0

with the nearest neighbours at distances �δ and rest terms denoted as the Hamiltonian of the
‘environment’ Ĥ u. Since, by construction, the cluster retains a lattice point symmetry, its
states |iSM�µ〉 with the energies EiS� are labelled by the cluster total spin S with the third
component M and by the irreducible representation �µ of the cluster point group. Different
states with the same values SM and �µ are distinguished by the index i. In addition we need
to consider the operator O

1A1
q1 = ∑

�δ(S0+�δ)
1
q as a double irreducible tensor which transforms

according to identity representation A1. The same arguments enable us to use the irreducible
form of the central spin operator (S0)

1
q ≡ (S0)

1A1
q1 . The part V̂ may be written as the inner

product:

V̂ = J
∑

q

(−1)q
[
A1 A1 A1

1 1 1

]
(S0)

1A1
q1 O

1A1
−q1 ≡ [(S0)

1A1 × O1A1 ]0A1
01 ,

where
[
A1 A1 A1
1 1 1

] = 1 is the Clebsch–Gordan coefficient of the cluster point group [32].

Let us suppose that we have found the eigenvalues EiuSu�u
and the eigenstates of the

environment Hamiltonian Ĥ u in the form |iuSuMu�uµu〉. The basis functions of the full
cluster are obtained by the addition rule of spin angular momentum:

|iuSu�u; s; SM�uµu〉 =
∑
µu,σ

[
Su s S

Mu σ M

]
|iuSuMu�uµu〉|sσ 〉, (2)

where [· · ·] is a Clebsch–Gordan coefficient, hereinafter we use that of given in [33], and |sσ 〉 is
the wavefunction of the central spin. Since the state |sσ 〉 is invariant under all transformations
of the point-symmetry group, the cluster basis functions transform like that of the environment
according to the same irreducible representations.

The calculation of matrix elements for the Hamiltonian (1) with the help of the Wigner–
Ekart theorem yields (see appendix A)

〈iuSu�u; s; SM�uµu|Ĥ |i ′uS ′
u�

′
u; s; S ′M ′�′

uµ
′
u〉

= EiuSu�u
δiu,i ′uδSu,S ′

u
δ�u,�′

u
δµu,µ′

u
δS,S ′δM,M ′ + J (−1)S

′
u+S+1/2

{
Su s S

s S ′
u 1

}
× δS,S ′δM,M ′ 〈s‖s‖s〉〈iuSu�u‖O1A1‖i ′uS ′

u�
′
u〉δ�u,�′

u
δµu,µ′

u
, (3)

where {· · ·} is a 6j symbol. The first reduced matrix element is 〈s‖s‖s〉 = √
s(s + 1)(2s + 1)

and the latter may be obtained if the environment eigenstates are known (see section 3). The
energy per bond is then calculated as

εiS�u
= 1

z


EiS�u

−
∑
iuSu

EiuSu�u

∣∣βiS�u

iuSu�u

∣∣2

 = 1

z

(
EiS�u

− 〈
E

(env)
iS�u

〉)
, (4)

where z is the number of nearest-neighbours of the central spin. The eigenfunctions

|iSM�µ〉 =
∑
iuSu

βiS�
iuSu�u

|iuSu�; s; SM�µ〉, (�µ = �uµu) (5)
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and the energy levels EiS� are determined by the direct diagonalization of the cluster
Hamiltonian H (equation (3)). The values εiS� should be regarded as an approximation
of the energy spectrum in the thermodynamical limit, whereas the energy EiS� divided per
bond number is much less appropriate for this.

It is important to note that from equation (3) it follows that to build the cluster target
state |iSM�µ〉, we need only to know the states |iuSuMu�uµu〉 of the environment with the
quantum numbers |S − s| � Su � S + s and �uµu = �µ.

The most important quantity typically measured in numerical simulations is the ground-
state staggered magnetization Mc. The quantum mechanical observable for the z projection
of the central spin is given as follows:

〈iSM�µ|Sz
0|iSM�µ〉 = (−1)1+S+sM

√
2S + 1

S(S + 1)
〈s‖S‖s〉

∑
iuSu

(−1)Su
∣∣βiS�

iuSu�u

∣∣2 {S 1 S

s Su s

}
,

(6)

where identity (B.3) is used. The staggered magnetization Mc is determined as

M2
c = lim

| �R|→∞
3|〈Sz( �R)Sz(0)〉|,

where factor 3 arises from rotational symmetry in spin space. At long distances
|〈Sz( �R)Sz(0)〉| ≈ 〈Sz(0)〉2 that yields our estimate of the full root-mean-square staggered

magnetization per spin Mc =
√

3
〈
Sz

0

〉2
.

According to equation (A.1), spin-correlation function in the states of A1 symmetry, the
ground-state symmetry as shown below, is determined as

〈iSMA1|Sz
0S

z
j |iSMA1〉 = 1

3
〈iSMA1| �S0 �Sj |iSMA1〉 = 1

3zf

∑
iuSu

∑
i ′uS ′

u

×β
iSA1
iuSuA1

β
iSA1
i ′uS ′

uA1
〈s‖S‖s〉〈iuSu‖S1A(rj )‖i ′uS ′

u〉(−1)s+S+S ′
u

{
Su s S

s S ′
u 1

}
, (7)

where zf is the lattice coordination number. In this calculation, it is convenient to introduce the
double irreducible tensor S1A

q1 (rj ) = ∑
j (Sj )

1
q summing spins at distance rj , which transforms

according to identity representation A1. One can see that O
1A1
q1 = S1A

q1 (δ).

2.2. Increasing cluster size

As mentioned above, the lattice point-group symmetry should be conserved with the increasing
cluster size. The requirement is put into a practical computational scheme by the following
algorithm. (i) At step N, we have the eigenvalues E

(N)
iuSu�u

and eigenvectors |iuSumu�uµu〉(N) of
the environment. Make a regular symmetry conserving expansion in the cluster size by adding
sites from the next coordination shell. (ii) Using a scheme of coupling of angular momenta we
build the set |iI SImI 〉 of states with total spin SI and third component mI for the part that is
being attached to the environment. The index iI labels other possible quantum numbers. (iii)
In general case, these functions form a basis of reducible representation of the cluster point
group. Based on the projection operator technique, one build basic functions |iI SImI�IµI 〉
transforming according to irreducible representations �IµI . (iv) Using a scheme of coupling
of angular momenta build a new set |iI SImI iIISIImII; Sumu�uµu〉(N+1) of states associated
with the extended environment, where the notation |iIISIImII�IIµII〉 = |iuSumu�uµu〉(N) is
introduced. An interaction between the Nth step environment and the part added to it can be
conveniently written through the irreducible tensors U 1tuγ and W 1t0γ built from spin operators
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of the ‘old’ and ‘new’ added parts, respectively,

V = J
∑
tut0

∑
γ ν

∑
q

(−1)q
[
γ γ A1

ν ν 1

]
U 1tuγ

qν W
1t0γ
−qν .

The indices tut0 label different tensors of the same symmetry. The matrix elements of the
extended (N + 1)th step environment is〈
iI SImI iIISIImII; Sumu�uµu|Hu|i ′I S ′

Im
′
I i

′
IIS

′
IIm

′
II; S ′

um
′
u�

′
uµ

′
u

〉
= E

(N)
iuSu�u

δSuS ′
u
δmum′

u
δ�u�′

u
δµuµ′

u
+ J

∑
t0tuγ

F (�I�II�;�′
I�

′
IIγ )(−1)S

′
I +SII +Su

×
{

SI SII Su

S ′
II S ′

I 1

}
〈iI SI�I‖U 1tI γ ‖i ′I S ′

I�
′
I 〉〈iIISII�II‖W 1tIIγ ‖i ′IIS ′

II�
′
II〉. (8)

The derivation of equation (8) and the reduced matrix elements of the operators involved in
equation (8) are given in appendices A and B, respectively.

At final step, we diagonalize (8) and find the eigenvalues E
(N+1)
iuSu�u

and eigenvectors

|iuSumu�uµu〉(N+1) =
∑

α
iuSu�u

iI SI �I iIISII�II

[
SI SII Su

mI mII mu

] [
�I �II �u

µI µII µu

]
× |iI SImI�IµI 〉|iIISIImII�IIµII〉.

The iteration is closed by recalculating reduced matrix elements of the irreducible tensors
W 1tIIγ in the basis of the extended environment (see appendix B). Note that following the
scheme we will in some cases form intermediate clusters, unsuitable for calculations of local
results, with a non-bipartite environment.

3. An example: spin-1/2 antiferromagnet on a square lattice

The spin-half antiferromagnet on a square lattice represents an optimal playground to study
the strength and limitations of the method. To implement the algorithm, we need first
to build wavefunctions of the environment which are predetermined by the lattice point
symmetry.

To perform calculations we start with the cluster of minimal size
√

5×√
5. The sequence

of clusters involved in the calculations is shown in figure 1. Within the smallest cluster, the
central spin interacts with the nearest environment consisting of the spins Sα1 , Sβ1 , Sγ1 , Sη1 . The
spin wavefunctions of the environment with the total spin number Su and the third component
Mu may be written as follows:∣∣∣∣12 1

2
(Sα1β1)

1

2

1

2
(Sγ1η1)SuMu

〉
=

∑
mα1 ,mβ1 ,mγ1 ,mη1

∑
mα1β1 ,mγ1η1

[
1/2 1/2 Sα1β1

mα1 mβ1 mα1β1

] [
1/2 1/2 Sγ1η1

mγ1 mη1 mγ1η1

]

×
[

Sα1β1 Sγ1η1 Su

mα1β1 mγ1η1 Mu

]
× ∣∣1/2mα1

〉∣∣1/2mβ1

〉∣∣1/2mγ1

〉∣∣1/2mη1

〉
.

In such a description, all allowed configurations are comprised by a set |00; 00〉, |11; 00〉,
|01; 1M〉, |10; 1M〉, |11; 1M〉, |11; 2M〉, where we have dropped the spin 1/2 arguments for
notation convenience. It is easy to see that the functions

∣∣Sα1β1Sγ1η1; SuMu

〉
form (in common

case) a basis of reducible representation of the group D4 (for details see appendix C):

ĝ
∣∣Sα1β1Sγ1η1; SuMu

〉 = D
(Su)

S ′
α1β1

S ′
γ1η1

,Sα1β1 Sγ1η1
(ĝ)
∣∣S ′

α1β1
S ′

γ1η1
; SuMu

〉
.

The matrices D
(0)
κ,κ ′(ĝ) (the upper index denotes the spin Su) with the multi-index κ ={

Sα1β1Sγ1η1

}
are readily determined and read
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α

a b

cd

1α2α3

1

β2

β3

2

1

3

γ1
γ2 γ3

η

η

η

β

Figure 1. Clusters used in the calculations.

D
(0)
κ,κ ′(E) = D

(0)
κ,κ ′
(
C2

4

) = D
(0)
κ,κ ′(σ

′
v) = D

(0)
κ,κ ′(σ

′′
v ) =

(
1 0
0 1

)
,

D
(0)
κ,κ ′(C4) = D

(0)
κ,κ ′
(
C3

4

) = D
(0)
κ,κ ′
(
Cx

2

) = D
(0)
κ,κ ′
(
C2

4

) =
(

1/2 −√
3/2

−√
3/2 −1/2

)
.

The functions |00; 00〉, |11; 00〉 form a basis of this two-dimensional representation. Still
another representation of D4 can be generated by means of the functions |01; 1M〉, |10; 1M〉
and |11; 1M〉

D
(1)
κ,κ ′(E) =


1 0 0

0 1 0
0 0 1


, D

(1)
κ,κ ′(C4) =


 −1/2 −1/2 1/

√
2

−1/2 −1/2 −1/
√

2

−1/
√

2 1/
√

2 0


,

D
(1)
κ,κ ′
(
C2

4

) =

0 1 0

1 0 0
0 0 −1


, D

(1)
κ,κ ′
(
C3

4

) =


−1/2 −1/2 −1/

√
2

−1/2 −1/2 1/
√

2

1/
√

2 −1/
√

2 0


,

D
(1)
κ,κ ′
(
Cx

2

) =


 1/2 1/2 1/

√
2

1/2 1/2 −1/
√

2

1/
√

2 −1/
√

2 0


, D

(1)
κ,κ ′
(
C

y

2

) =


 1/2 1/2 −1/

√
2

1/2 1/2 1/
√

2

−1/
√

2 1/
√

2 0


,

D
(1)
κ,κ ′(σ

′′
v ) =


−1 0 0

0 −1 0
0 0 1


, D

(1)
κ,κ ′(σ

′
v) =


 0 −1 0

−1 0 0
0 0 −1


 .

In a similar way we find the matrices D(2)
κ,κ (ĝ) in the basis |11; 2M〉

D(2)
κ,κ (ĝ) = 1(∀ĝ ∈ D4).
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The representations D(S) are the direct sums of the irreducible representations D(0) = D(0A1)⊕
D(0B2), D(1) = D(1B1) ⊕ D(1E),D(2) = D(2A1) (see appendix E). The basis functions of these
irreducible representations are given by a similarity transformation

|SuMu;�µ〉 =
∑

Sα1β1 ,Sγ1η1

T̂
(Su)

Sα1β1 Sγ1η1 ;�µ

∣∣Sα1β1Sγ1η1; SuMu

〉
, (9)

and the matrix T̂
(Su)

Sα1β1 Sγ1η1 ;�µ = T̂Sα1β1 Sγ1η1 Su
′;Su�uµu

δSu,S ′
u

found with the aid of the projection-
operator technique reads (for details see appendix D):

|00;A11〉 |00;B21〉 |1M;B11〉 |1M;E1〉 |1M;E2〉 |2M;A11〉
|00; 00〉

√
3

2
1
2 0 0 0 0

|11; 00〉 − 1
2

√
3

2 0 0 0 0

|01; 1M〉 0 0 1√
2

1
2

1
2 0

|10; 1M〉 0 0 1√
2

− 1
2 − 1

2 0

|11; 1M〉 0 0 0 1√
2

− 1√
2

0

|11; 2M〉 0 0 0 0 0 1
Given the environment eigenfunctions |SuMu;�uµu〉 with the eigenvalues ESu�u

, the reduced
matrix elements of the double irreducible tensor O1A1 = Sα1 + Sβ1 + Sγ1 + Sη1 can be computed
straightforwardly using the Wigner–Eckart theorem and the similarity transformation (9)[
γ �′ �

ν µ′ µ

]∗
〈S�‖O1γ ‖S ′�′〉

=
∑

S12,S34

∑
S ′

12,S
′
34

T̂ ∗
S12S34S;S�µT̂S ′

12S
′
34S

′;S ′�′µ′ 〈S12S34; S‖O1γ
ν ‖S ′

12S
′
34; S ′〉, (10)

where the indices α1, β1, γ1, η1 are correspondingly denoted by the numbers 1–4.
To calculate the reduced matrix element that comes onto the right-hand side of

equation (10) one has to rewrite O
1γ
qν through the spin operators and employ their expressions

for the reduced matrix elements of the spin operators:

〈S12S34; S‖S1‖S ′
12S

′
34; S ′〉 = (−1)1+S12+S34+S ′

12+S ′
[S12, S

′
12, S, S ′]1/2

×
{

S ′
12 1 S12

1/2 1/2 1/2

}{
S ′ 1 S

S12 S34 S ′
12

}
〈1/2‖S‖1/2〉δS34,S

′
34
, (11)

〈S12S34; S‖S2‖S ′
12S

′
34; S ′〉 = (−1)1+2S12+S34+S ′

[S12, S
′
12, S, S ′]1/2

×
{

S ′
12 1 S12

1/2 1/2 1/2

}{
S ′ 1 S

S12 S34 S ′
12

}
〈1/2‖S‖1/2〉δS34,S

′
34
, (12)

〈S12S34; S‖S3‖S ′
12S

′
34; S ′〉 = (−1)1+S12+2S ′

34+S[S34, S
′
34, S, S ′]1/2

×
{

S ′
34 1 S34

1/2 1/2 1/2

}{
S ′ 1 S

S34 S12 S ′
34

}
〈1/2‖S‖1/2〉δS12,S

′
12
, (13)

〈S12S34; S‖S4‖S ′
12S

′
34; S ′〉 = (−1)1+S12+S34+S ′

34+S[S34, S
′
34, S, S ′]1/2

×
{

S ′
34 1 S34

1/2 1/2 1/2

}{
S ′ 1 S

S34 S12 S ′
34

}
〈1/2‖S‖1/2〉δS12,S

′
12
. (14)

Since the operator O1A1 coincides with that of the environment total spin Ŝu, it turns out
that the matrix elements 〈Su�u|O1A1 |S ′

u�
′
u〉 are diagonal:

〈Su�u|O1A1 |S ′
u�

′
u〉 =

√
Su(Su + 1)(2Su + 1)δSu,S ′

u
δ�u,�′

u
.
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Table 1. Energies ES� and εS� .

S� 1
2 A1

1
2 B1

1
2 B2

1
2 E 3

2 A1
3
2 B1

3
2 E 5

2 A1

ES� 0 −J 0 −J − 3
2 J 1

2 J 1
2 J J

εS� 0 − 1
4 J 0 − 1

4 J − 3
8 J 1

8 J 1
8 J 1

4 J

As a consequence, one may check that this property holds for the Hamiltonian of the total
cluster:〈
Su�u; 1

2
; SM�uµu|Ĥ |S ′

u�
′
u;

1

2
; S ′M ′�′

uµ
′
u

〉

= J (−1)S
′
u+S+1/2

{
Su 1/2 S

1/2 S ′
u 1

}√
3

2
Su(Su + 1)(2Su + 1)δS,S ′δM,M ′δ�u,�′

u
δµu,µ′

u
δSu,S ′

u
.

A direct calculation shows that the ground state belongs to the Hilbert space sector with
S = 3/2 and � = A1. Hence, only the environment state with S� = 1A1 is needed to find
the ground-state energy (see table 1).

Let us now consider the next step, an expansion of the current environment block due
to the next coordination sphere of radius

√
2. After an addition of four spins Sa, Sb, Sc, Sd ,

the cluster becomes a square of size 3 × 3 with the bipartite environment of the central site
(figure 1). The basis associated with the added part is∣∣∣∣12 1

2
(Sab)

1

2

1

2
(Scd)SIMI

〉

=
∑

ma,mb,mc,md

∑
mab,mcd

[
1/2 1/2 Sab

ma mb mab

] [
1/2 1/2 Scd

mc md mcd

] [
Sab Scd SI

mab mcd MI

]

×|1/2ma〉|1/2mb〉|1/2mc〉|1/2md〉. (15)

Repeating the basic steps in the approach we obtain the symmetry adapted basis |SIMI ;�IµI 〉.
The matrix of corresponding similarity transformation has the form

|00;A11〉 |00;B11〉 |1M;B21〉 |1M;E1〉 |1M;E2〉 |2M;A11〉
|00; 00〉

√
3

2
1
2 0 0 0 0

|11; 00〉 − 1
2

√
3

2 0 0 0 0

|01; 1M〉 0 0 1√
2

0 1√
2

0

|10; 1M〉 0 0 1√
2

0 − 1√
2

0

|11; 1M〉 0 0 0 1 0 0
|11; 2M〉 0 0 0 0 0 1.

The environment Hamiltonian includes only interactions between the first and second
coordination spheres:

Ĥ u = J
[ �Sα1(

�Sd + �Sa) + �Sβ1(
�Sa + �Sb) + �Sγ1(

�Sb + �Sc) + �Sη1(
�Sc + �Sd)

]
. (16)

We now introduce the cluster irreducible tensors W 1�
qµ and U 1�

qµ transforming according to
representations �µ of the point-symmetry group D4 (for details see appendix D):

U
1A1
q1 = 1√

2
(Saq + Sbq + Scq + Sdq), U

1B2
q1 = 1√

2
(Saq − Sbq + Scq − Sdq),

U 1E
q1 = 1√

2
(Saq + Sbq − Scq − Sdq), U 1E

q2 = 1√
2
(Saq − Sbq − Scq + Sdq),

W
1A1
q1 = 1√

2

(
Sα1q + Sβ1q + Sγ1q + Sη1q

)
, W

1B1
q1 = 1√

2

(
Sα1q − Sβ1q + Sγ1q − Sη1q

)
,

W 1E
q1 = (

Sα1q − Sγ1q

)
, W 1E

q2 = (
Sη1q − Sβ1q

)
(17)
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and then rewrite equation (16) as

Hu = J
∑
γ ν

∑
q

(−1)q
[
γ γ A1

ν ν 1

]
U 1γ

qµW
1γ
−qµ = J

∑
γ

[U 1γ × W 1γ ]0A1
01 . (18)

The reduced matrix elements of the irreducible operators that appear in equation (8) can be
obtained exactly from result (10):

〈SI�I‖U 1A1‖S ′
I�

′
I 〉 = 1√

2
〈SI‖S‖SI 〉δSI ,S

′
I
δ�I ,�

′
I
, 〈SII�II‖W 1A1‖S ′

II�
′
II〉

= 1√
2
〈SII‖S‖SII〉δSII ,S

′
II
δ�II ,�

′
II
, (19)

〈SI�I‖U 1E‖S ′
I�

′
I 〉 =




0A1 0B1 1B2 1E 2A1

0A1 0 0 0
√

2 0
0B1 0 0 0 −√

6 0
1B2 0 0 0 −√

6 0

1E −1
√

3 −√
3 0 −√

5
2A1 0 0 0

√
10 0




,

〈SII�II‖W 1E‖S ′
II�

′
II〉 =




0A1 0B2 1B1 1E 2A1

0A1 0 0 0
√

2 0
0B2 0 0 0

√
6 0

1B1 0 0 0 −√
6 0

1E −1 −√
3 −√

3 0 −√
5

2A1 0 0 0
√

10 0




.

To compute matrix elements of the Hamiltonian Hu, we construct the basis

|iI SI�I iIISII�II; SuMu�uµu〉 =
∑

mI ,mII

∑
µI ,µII

[
SI SII Su

mI mII Mu

] [
�I �II �u

µI µII µu

]

× |iI SImI�IµI 〉|iIISIImII�IIµII〉 (20)

formed from the eigenstates |iI SImI�IµI 〉 and |iIISIImII�IIµII〉 of the ‘new’ and ‘old’ added
parts, correspondingly. Then we obtain using equation (A.5) the expression similar to
equation (8) with EiI SI �I

= EiIISII�II = 0. Applying exact diagonalization to the Hamiltonian
Hu one can then find the eigenfunctions

|iuSu�uµu〉 =
∑

α
iuSu�u

iI SI �I ;iIISII�II
|iI SI�I iIISII�II; SuMu�uµu〉

and the energy spectrum EiuSu�u
of the environment. By using the recursion relation (for

details see (B.5) in appendix B)

〈iuSu�u‖O1A1‖i ′uS ′
u�

′
u〉 = δ�u,�′

u

∑
iI ,SI ,�

∑
i ′II ,S

′
II ,�

′
II

∑
iII ,SII ,�II

α
iuSu�u

iI SI �I ;iIISII�II
α

i ′uS
′
u�

′
u

iI SI �I ;i ′IIS ′
II�

′
II

× (−1)1+SI +S ′
II +Su [Su, S

′
u]1/2

{
Su 1 S ′

u

S ′
II SI SII

}
〈iIISII�II‖O1A1‖i ′IIS ′

II�
′
II〉 (21)

one finds the reduced matrix elements in the environment basis |iuSuA1〉 that come into the
matrix of the total cluster (3).

Formulae (3)–(5) allow us to obtain any of the possible 54 square cluster states. Our
calculation shows that the ground state belongs to the Hilbert space sector with S = 1/2
and � = A1. Hence, only the environment states with S� = 0A1, 1A1 are needed for the
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Table 2. Environment states of symmetry 0A1.

iu α
iu0A1
0A10A1

α
iu0A1
1E1E α

iu0A1
2A12A1

Eiu0A1

1 0.071 0.449 0.890 −3.651J

2 0.569 0.715 −0.406 −0.726J

3 −0.819 0.535 −0.205 0.377J

Table 3. Environment states of symmetry 1A1.

iu α
iu1A1
0A31A3

α
iu1A1
1A40A4

α
iu1A1
1E1E α

iu1A1
2A12A1

Eiu1A1

1 0.153 0.153 −0.478 −0.851 −3.128J

2 −0.470 −0.470 0.566 −0.487 −1.202J

3 −0.505 −0.505 −0.672 0.196 1.330J

4 −0.707 0.707 0 0 0

Table 4. Data on the ground state of the cluster 3 × 3.

β
g

10A1
β

g

20A1
β

g

30A1
β

g

11A1
β

g

21A1
β

g

31A1
β

g

41A1
Eg

−0.712 0.044 0.010 −0.695 0.0048 −0.090 0.011 −4.749

evaluation of the ground-state energy. Below we summarize the results obtained for this
particular case.

Using equation (8) and the explicit expressions for the nonzero sums of Clebsch–Gordan
coefficients of the point group D4 (see equation (A.3) in appendix A)

F(A1A1A1;A1A1A1) = F(EEA1;A1A1E) = F(EEA1;EEA1) = 1,

F (A1A1A1;EEE) = 1/2,

we obtain

Ĥ (0A1)
u =




0 − 1√
3
J 0

− 1√
3
J −J −

√
5
3J

0 −
√

5
3J −3J




in the basis of the states |0A10A1; 00A1〉, |1E1E; 00A1〉, |2A12A1; 00A1〉. The
diagonalization of Ĥu

(0A1) yields three states of the 0A1 symmetry (see table 2).
As for the Ĥu operator with Su = 1, we have the following matrix representation, with

the same considerations as for the Ĥu
(0A1) operator:

Ĥ (1A1)
u =




0 0 J 0
0 0 J 0

J J − 1
2J −

√
5

2 J

0 0 −
√

5
2 J − 5

2J




in the basis |0B11B1; 1MA1〉, |1B20B2; 1MA1〉, |1E1E; 1MA1〉, |2A12A1; 1MA1〉. The
states of 1A1 symmetry are listed in table 3.

By using the recursion relation (21) with the starting value (19), one finds the reduced
matrix elements in the environment basis |iuSuA1〉. Plugging them into equation (3) we get the
target states

∣∣i 1
2MA1

〉
[see equation (5)] of the cluster and their energies Ei 1

2 A1
(i = 1 . . . 7).

The number of states involved in determining the cluster ground state equals 7 (see table 4).
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Now we list the results for observables. The energy per bond found with the help of
equation (4) is εg = −0.3442 J. This result may be compared to those results of QMC [7]
εg = −0.3347 J and DMRG εg = −0.32679 J for lattice of size 20 × 20 and for number of
DMRG states 150 [6]. (Extrapolation of the DMRG results in the infinite-lattice limit yields
εg = −0.3321 J). The best available DCM [21], CCM [26] and RSRG-EI [19] results are
−0.33486 J, −0.33308 J and −0.33409 J, respectively. Using (6), we get the ground-state
expectation value of the z component of the central spin

〈
Sz

0

〉
0 = 0.173 and the staggered

magnetization M =
√

3
〈
Sz

0

〉2
0 = 0.299. For comparison, the extrapolated QMC result for the

lattice magnetization M = 0.3070. We also provide an estimate of the spin–spin correlation
functions (7): 〈

Sz
0S

z
r=1

〉 = −0.115,
〈
Sz

0S
z

r=√
2

〉 = 0.073.

These estimates should be compared with the known results −0.1116 and 0.0637,
correspondingly [27].

We have made a preliminary calculations by using the small cluster 3 × 3 and one can see
that an accuracy of the results is still insufficient. However, we have established the following
important features:

(i) The ground state of the system belongs to identity representation A1.
(ii) The lowest lying environment states of the same point symmetry give a contribution to

the ground state of the system with the largest weight
∣∣βg

10A1

∣∣2 +
∣∣βg

11A1

∣∣2 ≈ 0.989. One
can see the coefficients β2 by noting that the diagonal matrix elements of the reduced
density matrix in DMRG language [2].

(iii) A comparison of the ground-state energy per bond as calculated by Eg/12 = −0.396 J
and its infinite-lattice approximation (4) within our approach shows that we produce a
better result.

At further step, the procedure is repeated and the environment block grows by adding the
coordination sphere of radius 2. When the new spins �Sα2 ,

�Sβ2 ,
�Sγ2 ,

�Sη2 of the sphere are added,
the cluster transforms into the rhombus of size

√
13 × √

13. The cluster has the non-bipartite
environment; hence, it is instructive to study this case to examine the effect of non-biparticity.

The Hamiltonian of the new environment decomposes as

Ĥ u = Hu(0) + J
( �Sα1

�Sα2 + �Sβ1
�Sβ2 + �Sγ1

�Sγ2 + �Sη1
�Sη2

)
. (22)

Hu(0) contains all interactions within the ‘old’ environment, and the second term describes
all couplings between this part and the added sites.

The irreducible tensors built from the added spins are the same as those of the first
coordination sphere (17):

W
1A1
q1 = 1√

2

(
Sα2q + Sβ2q + Sγ2q + Sη2q

)
, W

1B1
q1 = 1√

2

(
Sα2q − Sβ2q + Sγ2q − Sη2q

)
,

W 1E
q1 = (

Sα2q − Sγ2q

)
, W 1E

q2 = (
Sη2q − Sβ2q

)
.

(23)

One can then cast the Hamiltonian (22) in a more amenable form

Ĥ u = Ĥ u(0) + 1
2J [U 1A1 × W 1A1 ]0A1

01 + 1
2J [U 1B1 × W 1B1 ]0A1

01 + 1√
2
J [U 1E × W 1E]0A1

01 ,

where U 1γ are given by

U
1A1
q1 = 1√

2

(
Sα1q + Sβ1q + Sγ1q + Sη1q

)
, U

1B1
q1 = 1√

2

(
Sα1q − Sβ1q + Sγ1q − Sη1q

)
,

U 1E
q1 = (

Sα1q − Sγ1q

)
, U 1E

q2 = (
Sη1q − Sβ1q

)
.

(24)
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The matrices formed from the reduced matrix elements of W 1γ tensor coincide with (19).
To find those of U 1γ tensor we use equation (B.5). The expressions mentioned (19) are used
to initialize the calculations.

From direct calculations one can show that the quantum numbers S = 5/2 and � = A1

are attached to the ground state of the rhombus. This state is formed from 41 environment
states with the symmetry S�u = 2A1 and 22 states of symmetry S�u = 3A1. Numerical
diagonalization gives the cluster ground-state energy Eg

(
5
2A1

) = −5.779 J that yields the
ground-state energy per bond εg = −0.309 25 J in the thermodynamic limit. If we compare
this result with that of QMC, we see that the agreement becomes worse. Nevertheless, the
conclusions made for the square cluster 3×3 hold: (i) both the ground state of the environment
and that of the total cluster have the lattice point symmetry A1. (ii) The largest weight (is of
the order 0.993) into the sum of diagonal elements in the density matrix comes from three
lowest lying 2A1 states and one state of symmetry 3A1, whereas the total number of states
is 63.

Monitoring energies per bond εiS� for the total cluster spectrum EiS� , we found that the
minimal value εmin ≈ −0.3229 J is reached for the lowest state of symmetry 3

2A1, however,
E
(

3
2A1

)
> Eg = E

(
5
2A1

)
. A similar situation, when a minimal energy per bond belongs to

a higher lying state, has been early observed in the DMRG study of antiferromagnetic chains
[2]. Despite the number of sites in the cluster

√
13 × √

13 is greater than that of in the cluster
3 × 3, we see that the result for εmin deteriorates compared to the QMC value −0.3347 J.
Close inspection allows us to suggest that this is because we are working on the cluster with a
non-bipartite environment.

To proceed with increasing cluster size and satisfy the biparticity requirement we should
take the square cluster 5 × 5 in the next step. For the 24-site environment of the cluster,
an exact-diagonalization calculation of the total spectrum is not possible at present and so,
to move on to the next-larger system, we have to elaborate a procedure for determining the
states giving the best approximation to true environment states. To solve the problem and
implement the condition of bipartite environment we take a system in the form of ‘decorated
cross’ obtained from the former cluster

√
13 × √

13 by adding four spins �Sα3 ,
�Sβ3 ,

�Sγ3 ,
�Sη3

(figure 1). The form makes equal a number of sites in both sublattices, though it incorporates
eight sites that are being attached to the cluster by single-lattice bonds. At the same time,
exact diagonalization of the cluster

√
17 × √

17 is allowed; hence we compare the exact
diagonalization results with those obtained from a symmetry-based truncation procedure and
analyse a truncation error on a number of states kept. Since the cluster increasing is similar to
that used in the previous step, we present only the results of calculations. The ground state of
the extended cluster environment has the symmetry 0A1. The total number of states with the
same symmetry is 194. Together with 439 1A1 states of the environment they form a ground
state of the total cluster labelled by the symmetry numbers 1

2A1. Results for the ground-state
energy per bond ε = −0.3304, the staggered magnetization m = 0.305 and the spin–spin
correlation functions

〈
Sz

0S
z
r=1

〉 = −0.1101,
〈
Sz

0S
z

r=√
2

〉 = 0.0615 agree well with the mentioned
ED and QMC results and are much better than those obtained for the square cluster 3 × 3. A
deviation from the ED result is found for

〈
Sz

0S
z
r=2

〉 = 0.0169. This discrepancy arises from
finite size effects and an imperfect topology of the cluster.

We now describe the low-energy spectrum of the environment. As the dynamics
of the Néel order parameter is one of the free rotators, the low-energy levels scale as
E(S) ∼ S(S + 1)/N , where the inertia of that rotator is proportional to the number of
sites [28, 29]. The environment lowest energy levels (tower of states) belonging to different
irreducible representations of the lattice point group are shown in figure 2 for different S
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Figure 2. The lowest energy spectrum of the environment for the cluster
√

17×√
17 on the square

lattice. The SU (2) symmetry breaks and a long-range Néel order appear as a set of A1 states
with an energy scaling as E(S) ∼ S(S + 1) (dashed line). The symbols represent the irreducible
representations of the different eigenstates.
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Figure 3. The cluster ground-state energy E, the energy per bond ε, and the staggered magnetization
m convergence for the

√
17 × √

17 cluster versus number of environment states kept.

sectors. The SU(2) breaking due to the long-range Néel order appears as a set of A1 states,
lying off from other levels, with an energy scaling as E(S) ∼ S(S + 1).

In the remainder of this section, we describe a version of the truncation procedure. The
main idea will be illustrated on an example of the ground-state properties. An inspection
of results for the current and previous clusters reveals that one has to take the lowest lying
environment eigenstates both in the 0A1 and 1A1 sectors. As for the number of kept states it
seems to be most simple to take M states equally from the both subspaces, albeit the choice may
not be optimal. To prove that this concept works we recalculate the observables found above
on the various numbers of environment states kept (see table 5). As can be seen from figure 3
the convergence of the results is exponentially fast in M. Merely keeping 100 basis states may
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Table 5. Convergence of the ground-state properties versus the number of environment states kept.

M(0A1) M(1A1) E0/J ε/J m 〈Sz
0Sz(1)〉 〈Sz

0S
z(

√
2)〉

1 1 −7.9010 −0.2410 0.354 897 −0.080 333 0.065 647
5 5 −8.1018 −0.3136 0.304 148 −0.104 533 0.071 420

10 10 −8.1282 −0.3238 0.304 928 −0.107 933 0.073 201
20 20 −8.1378 −0.3279 0.305 707 −0.109 300 0.073 872
50 50 −8.1425 −0.3301 0.305 101 −0.110 033 0.074 247

100 100 −8.1429 −0.3303 0.305 187 −0.110 100 0.074 289
194 194 −8.1430 −0.3304 0.305 187 −0.110 133 0.074 300

be as efficient as keeping of all 633 environment states intact. We regard the resulting better
than 0.01% agreement for ε and m as support for the efficiency of our truncation procedure.
We note that the truncation procedure becomes inevitable for the next step system of size 5×5
with a bipartite environment, when the ground-state subspace has a dimension 93034.

4. Conclusions

In this paper, we present a quantum cluster solver for the spin-S Heisenberg model on a
two-dimensional lattice. The formalism is based on the real-space renormalization procedure
and uses the lattice point group-theoretical analysis and non-Abelian SU(2) spin symmetry
technique. Let us summarize advantages of the approach as follows:

(i) The cluster spin states are decomposed into parts belonging to different irreducible
representations of the lattice point group and to different values of the total spin. Due
to the embedded group-theoretical analysis, our approach can handle each of the cluster
target states independently that offers a distinct advantage for parallel computation.

(ii) An extension of MPM destined for quantum spin chains to higher dimensions has inspired
the construction of variational methods for the ground states of 2D spin Hamiltonians
(vertex state models [34], tensor product variational approach [35], tensor product ansatz
[36]). Since, the trial states are represented by the two-dimensional product of local
weights, these approaches are faced with severe limitations concerning their applicability
because of the relation between a spin value and lattice topology. The shortcoming lacks
in our formalism.

(iii) Large sparce-matrix diagonalization algorithms (Lanscoz technique, for example) used
in DMRG and ED methods converge to maximum and minimum eigenvalues of a model
Hamiltonian, i.e. to eigenvalues at the edges of the spectrum. Our approach gives access
to eigenstates of an entire spectrum.

(iv) Combined with a decimation procedure of the environment states like those used in the
DMRG technique the group-theoretical analysis allows us to overcome the exponential
growth of computational efforts with an increase of the system size. Our approach using
the total spin S and the irrep index �µ as good quantum numbers yields a rather reliable
truncation procedure of the Hilbert space of the model Hamiltonian.

(v) Calculation of observables for the central spin involving a density matrix of the
environment reduces edge effects which are inevitable on finite-size clusters.

The major drawback of the formalism is that it does not allow an easy implementation:
a complexity in construction of basic sets via the repeated evaluation of 6j and 6� symbols,
the calculation involves two matrix diagonalizations etc. The performance gains from
implementing the SU(2) and lattice point symmetries are not impressive in comparison with
gains from exploiting just the simple U(1) symmetry leading to total magnetization as a good
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quantum number. Their use in studies with larger clusters without truncation cannot help to
alleviate the problem of the exponential growth of computational efforts.

In the method that we suggest, short-range correlations on the scale of the cluster are
taken into account, while correlations on a scale larger than the cluster size are neglected.
To overcome this shortcoming we need to restore translational symmetry of the lattice. The
results of these investigations will be reported elsewhere. In this connection, we note that the
translational invariance holds for the DCM and CCM methods.
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Appendix A

Let |iI SI�I iIISII�II; SM�µ〉 is a state with total spin S, third component M, and transforming
according to irreducible representation �µ. This state appears in the tensor product
decomposition (iI SI�I )×(iIISII�II), where (iS�) denotes a state with total spin S, irreducible
representation � and i labels other possible quantum numbers.

We need to compute the matrix element

〈iI SI�I iIISII�II; SM�µ|[U 1γ × W 1γ ]0A1
01 |i ′I S ′

I�
′
I i

′
IIS

′
II�

′
II; S ′M ′�′µ′〉

=
∑
qν

∑
{m,µ}

(−1)q
[
γ γ A1

ν ν 1

] [
�I �II �

µI µII µ

]∗

×
[
�′

I �′
II �′

µ′
I µ′

II µ′

] [
SI SII S

mI mII M

] [
S ′

I S ′
II S ′

m′
I m′

II M ′

]
×〈iI SImI�IµI |U 1γ

qν |i ′I S ′
Im

′
I�

′
Iµ

′
I 〉

× 〈iIISIImII�IIµII|W 1γ
−qν |i ′IIS ′

IIm
′
II�

′
IIµ

′
II〉. (A.1)

The Wigner–Eckart theorem for a double irreducible tensor reads

〈iI SImI�IµI |W 1γ
qν |i ′I S ′

Im
′
I�

′
Iµ

′
I 〉

= (−1)SI −mI

(
SI 1 S ′

I

−mI q m′
I

)[
γ �′

I �I

ν µ′
I µI

]∗
〈iI SI�I‖W 1γ ‖i ′I S ′

I�
′
I 〉, (A.2)

where the 3j symbol is related to the Clebsch–Gordan coefficient by(
S1 S2 S3

m1 m2 m3

)
= 1√

2S3 + 1
(−1)SI +S2−m3

[
S1 S2 S3

m1 m2 −m3

]
.

A full contraction of five Clebsch–Gordan coefficients of the point group may be written via
the 6� symbol:

F(�I�II�;�′
I�

′
IIγ ) =

∑
νµI µIIµ

′
I µ

′
II

[
γ γ A1

ν ν 1

] [
�I �II �

µI µII µ

]∗

×
[
�′

I �′
II �′

µ′
I µ′

II µ′

] [
γ �′

I �I

ν µ′
I µI

]∗ [
γ �′

II �II

ν µ′
II µII

]∗

∼
{

�I �II �

�′
II �′

I γ

}[
A1 �′ �

1 µ′ µ

]
δ��′δµµ′, (A.3)

however, it is more convenient to find directly this sum.
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Substituting (A.2) into (A.1) and performing the sum with the aid of equation (A.3) and
the formula (see [33], for example)

∑
χψρστ

(−1)p−ψ+q−χ+r−ρ+s−σ+t−τ

(
p a q

ψ −α χ

)(
q r t

−χ ρ τ

)

×
(

r a s

−ρ α′ σ

)(
s p t

−σ −ψ −τ

)
= (−1)a−α

(2a + 1)

{
q p a

s r t

}
δaa′δαα′ ,

(A.4)

we get finally

〈iI SI�I iIISII�II; SM�µ|[U 1γ × W 1γ ]0A1
01 |i ′I S ′

I�
′
I i

′
IIS

′
II�

′
II; S ′M ′�′µ′〉

= δSS ′δMM ′δ��′δµµ′(−1)S
′
I +SII +S

{
SI SII S

S ′
II S ′

I 1

}
F(�I�II�;�′

I�
′
IIγ )

×〈iI SI�I‖U 1γ ‖i ′I S ′
I�

′
I 〉〈iIISII�II‖W 1γ ‖i ′IIS ′

II�
′
II〉. (A.5)

The reduced matrix elements appearing in (A.5) result from the previous iteration.

Appendix B

The systematic increasing cluster size requires an iterative procedure to compute the reduced
matrix elements of the double irreducible tensors U 1γ or W 1γ (acting on the states with indices
I and II , respectively) in the basis

|iSm�µ〉 =
∑

αiS�
iI SI �I ;iIISII�II

[
SI SII S

mI mII m

] [
�I �II �

µI µII µ

]
× |iI SImI�IµI 〉|iIISIImII�IIµII〉, (B.1)

with an aid of the Wigner–Eckart theorem. On the other hand, one can use the basis of states
(B.1) to obtain

〈iSm�µ|W 1γ
qν |i ′S ′m′�′µ′〉 =

∑
αiS�

iI SI �I ;iIISII�II
αi ′S ′�′

iI SI �I ;i ′IIS ′
II�

′
II

×
∑

mI mIIm
′
II

[
SI SII S

mI mII m

] [
SI S ′

II S ′

mI m′
II m′

]
(−1)SII−mII

(
SII 1 S ′

II

−mII q m′
II

)

×
∑

µI µIIµ
′
II

[
γI �II �

µI µII µ

]∗ [
�I �′

II �

µI µ′
II µ

]

×
[
γ �′

II �II

µ µ′
II µII

]∗
〈iIISII�II‖W 1γ ‖i ′IIS ′

II�
′
II〉. (B.2)

The sum over mI ,mII and m′
II is performed with the aid of the formula

∑
χψρ

(−1)p−ψ+q−χ+r−ρ

(
p a q

ψ α −χ

)(
q b r

χ β −ρ

)(
r c p

ρ γ −ψ

)

=
(

a b c

−α −β −γ

){
a b c

r p q

}
. (B.3)

The sum of three Clebsch–Gordan coefficients of the lattice point group in turn can be
transformed as follows:
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∑
µI µIIµ

′
II

∑
ν̄µ̄′

[
�I �II �

µI µII µ

]∗ [
�I �′

II �′

µI µ′
II µ̄′

] [
γ �′

II �II

ν̄ µ′
II µII

]∗
δνν̄δµ′µ̄′

=
∑

µI µIIµ
′
II

∑
ν̄µ̄′

[
�I �II �

µI µII µ

]∗ [
�I �′

II �′

µI µ′
II µ̄′

] [
γ �′

II �II

ν̄ µ′
II µII

]∗

×
∑
�̄µ̄

[
γ �′ �̄

ν µ′ µ̄

]∗ [
γ �′ �̄

ν̄ µ̄′ µ̄

]

=
∑
�̄µ̄

[
γ �′ �̄

ν µ′ µ̄

]∗ ∑
µI µIIµ

′
II

∑
ν̄µ̄′

[
�I �II �

µI µII µ

]∗

×
[
�I �′

II �′

µI µ′
II µ̄′

] [
γ �′

II �II

ν̄ µ′
II µII

]∗ [
γ �′ �̄

ν̄ µ̄′ µ̄

]
.

After permutation of the first and second columns in the third Clebsch–Gordan coefficient
the sum over projections µI , µII, µ

′
II, ν̄, and µ̄′ is easily performed that gives immediately the

6� symbol [38]:

∑
�̄µ̄

[
γ �′ �̄

ν̄ µ̄′ µ̄

]∗ {
γ �′

II �II

�I � �′

}
δ��̄δµµ̄ε(�I�

′
II�

′), (B.4)

where we use the symmetry property of the Clebsch–Gordan coefficients[
�1 �2 �

µ1 µ2 µ

]
= ε(�1�2�)

[
�2 �1 �

µ2 µ1 µ

]
,

and the sign ε(�1�2�) = ±1 depends on the point group.
The reduced matrix element can be computed using (B.2), (B.4) that yields the results

〈iS�‖W 1γ ‖i ′S ′�′〉 =
∑

αiS�
iI SI �I ;iIISII�II

αi ′S ′�′
iI SI �I ;i ′IIS ′

II�
′
II

× (−1)1+SI +S ′
II +S[S, S ′]1/2

{
S 1 S ′

S ′
II SI SII

}

×〈iIISII�II‖W 1γ ‖i ′IIS ′
II�

′
II〉
{

γ �′
II �II

�I � �′

}
ε(�I�

′
II�

′), (B.5)

and

〈iS�‖U 1γ ‖i ′S ′�′〉 =
∑

αiS�
iI SI �I ;iIISII�II

αi ′S ′�′
i ′I S

′
I �

′
I ;iIISII�II

× (−1)1+SI +SII +S ′
[S, S ′]1/2

{
S 1 S ′

S ′
I SII SI

}

×〈iI SI�I‖U 1γ ‖i ′I S ′
I�

′
I 〉
{

γ �′
I �I

�II � �′

}
, (B.6)

where [S] ≡ (2S + 1).

Appendix C

Here, we give a detailed derivation of representation for the D4 point group in the basis of
four coupled connector spins
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|S1S2(S12)S3S4(S34)SM〉 =
∑[

S1 S2 S12

m1 m2 m12

] [
S3 S4 S34

m3 m4 m34

]

×
[

S12 S34 S

m12 m34 M

]
|S1m1〉|S2m2〉|S3m3〉|S4m4〉.

Consider first the π/2 rotation Ĉ4 about the z-axis:

Ĉ4|S1S2(S12)S3S4(S34)SM〉 =
∑

m1,m2

∑
m3,m4

∑
m12,m34

[
S1 S2 S12

m1 m2 m12

] [
S3 S4 S34

m3 m4 m34

]

×
[

S12 S34 S

m12 m34 M

]
|S2m2〉|S3m3〉|S4m4〉|S1m1〉

=
∑

m1,m2

∑
m3,m4

∑
m12,m34

[
S1 S2 S12

m1 m2 m12

] [
S3 S4 S34

m3 m4 m34

] [
S12 S34 S

m12 m34 M

]

×
∑

m̄1,m̄2

∑
m̄3,m̄4

|S2m̄2〉|S3m̄3〉|S4m̄4〉|S1m̄1〉δm̄2m2δm̄3m3δm̄4m4δm̄1m1 .

To proceed we use the orthogonality property for the Clebsch–Gordan coefficients:

δm̄2m2δm̄3m3δm̄4m4δm̄1m1 =
∑

S14,m14

∑
S23,m23

[
S2 S3 S23

m2 m3 m23

] [
S2 S3 S23

m̄2 m̄3 m23

]

×
[

S4 S1 S14

m4 m1 m14

] [
S4 S1 S14

m̄4 m̄1 m14

]
.

Then

Ĉ4|S1S2(S12)S3S4(S34)SM〉
=

∑
m1,m2

∑
m3,m4

∑
m12,m34

[
S1 S2 S12

m1 m2 m12

] [
S3 S4 S34

m3 m4 m34

] [
S12 S34 S

m12 m34 M

]

×
∑

m̄1,m̄2

∑
m̄3,m̄4

|S2m̄2〉|S3m̄3〉|S4m̄4〉|S1m̄1〉
∑

S14,m14

∑
S23,m23

[
S2 S3 S23

m2 m3 m23

]

×
[

S2 S3 S23

m̄2 m̄3 m23

] [
S4 S1 S14

m4 m1 m14

] [
S4 S1 S14

m̄4 m̄1 m14

]

=
∑

m1,m2

∑
m3,m4

∑
m12,m34

[
S1 S2 S12

m1 m2 m12

] [
S3 S4 S34

m3 m4 m34

] [
S12 S34 S

m12 m34 M

]

×
∑

m̄1,m̄2

∑
m̄3,m̄4

|S2m̄2〉|S3m̄3〉|S4m̄4〉|S1m̄1〉

×
∑

S14,m14

∑
S23,m23

∑
m̄14,m̄23

[
S2 S3 S23

m2 m3 m23

] [
S2 S3 S23

m̄2 m̄3 m̄23

]

×
[

S4 S1 S14

m4 m1 m14

] [
S4 S1 S14

m̄4 m̄1 m̄14

]
δm̄23m23δm̄14m14

=
∑

m1,m2

∑
m3,m4

∑
m12,m34

[
S1 S2 S12

m1 m2 m12

] [
S3 S4 S34

m3 m4 m34

] [
S12 S34 S

m12 m34 M

]

×
∑

m̄1,m̄2

∑
m̄3,m̄4

|S2m̄2〉 |S3m̄3〉 |S4m̄4〉 |S1m̄1〉
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×
∑

S14,m14

∑
S23,m23

∑
m̄14,m̄23

[
S2 S3 S23

m2 m3 m23

] [
S2 S3 S23

m̄2 m̄3 m̄23

]

×
[
S4 S1 S14

m4 m1 m14

][
S4 S1 S14

m̄4 m̄1 m̄14

]∑
S̄,M̄

[
S23 S14 S̄

m23 m14 M̄

] [
S23 S14 S̄

m̄23 m̄14 M̄

]

A full contraction of six Clebsch–Gordan coefficients yields the 9j symbol:

∑
m1,m2

∑
m3,m4

∑
m12,m34

[
S1 S2 S12

m1 m2 m12

] [
S3 S4 S34

m3 m4 m34

] [
S12 S34 S

m12 m34 M

]

×
[

S4 S1 S14

m4 m1 m14

] [
S2 S3 S23

m2 m3 m23

] [
S23 S14 S̄

m23 m14 M̄

]

= (−1)S1+S4−S14(−1)S3+S4−S34(−1)S23+S14−S̄

×
∑

m1,m2

∑
m3,m4

∑
m12,m34

[
S1 S2 S12

m1 m2 m12

] [
S3 S4 S34

m3 m4 m34

] [
S12 S34 S

m12 m34 M

]

×
[

S1 S4 S14

m1 m4 m14

] [
S2 S3 S23

m2 m3 m23

] [
S14 S23 S̄

m14 m23 M̄

]

= (−1)S1+S4−S14(−1)S3+S4−S34(−1)S23+S14−S̄

× [(2S12 + 1)(2S14 + 1)(2S23 + 1)(2S34 + 1)]1/2




S1 S2 S12

S4 S3 S34

S14 S23 S


 δSS̄δMM̄,

where we use the symmetry relation for the Clebsch–Gordan coefficients[
S1 S2 S12

m1 m2 m12

]
= (−1)S1+S2−S12

[
S2 S1 S12

m2 m1 m12

]
.

By introducing the state with the recoupled four spins

|S2S3(S23)S4S1(S14)S̄M̄〉 =
∑

m̄1,m̄2

∑
m̄3,m̄4

∑
m̄14,m̄23

[
S2 S3 S23

m̄2 m̄3 m̄23

] [
S4 S1 S14

m̄4 m̄1 m̄14

]

×
[

S23 S14 S̄

m̄23 m̄14 M̄

]
|S2m̄2〉|S3m̄3〉|S4m̄4〉|S1m̄1〉,

we get finally

Ĉ4 |S1S2(S12)S3S4(S34)SM〉 =
∑

S14,S23

(−1)S1+S4−S14(−1)S3+S4−S34 (−1)S23+S14−S̄

× [(2S12 + 1)(2S14 + 1)(2S23 + 1)(2S34 + 1)]1/2

×



S1 S2 S12

S4 S3 S34

S14 S23 S


 |S2S3(S23)S4S1(S14)SM〉,

that is transformation from a coupling scheme to another. Then an action of the operator Ĉ4

is defined by a linear transformation of the basis κ ′ = {S ′
1S

′
2(S

′
12)S

′
3S

′
4(S

′
34)}

Ĉ4|κ〉 =
∑
κ ′

D
(S)
κ ′κ(Ĉ4)|κ ′〉,
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where the matrix D
(S)
κ ′κ(Ĉ4) is determined by the expression

D
(S)
κ ′κ(Ĉ4) = δS2S

′
1
δS3S

′
2
δS4S

′
3
δS1S

′
4
δS23S

′
12
δS14S

′
34

[(2S12 + 1)(2S14 + 1)(2S23 + 1)(2S34 + 1)]1/2

×(−1)S1+S4−S14(−1)S3+S4−S34(−1)S23+S14−S̄




S1 S2 S12

S4 S3 S34

S14 S23 S


 .

We can handle analogously another symmetry operations in the D4 group.

Appendix D

The standard method for constructing an irreducible basis is to use the projection operator

P �
µ = [�]

[G]

∑
ĝ∈G

D(�)
µµ (g)ĝ, (D.1)

and the shift operator

P �
µν = [�]

[G]

∑
ĝ∈G

D(�)
µν (g)ĝ, (D.2)

where [G] is the order of the group G, [�] is the dimension of the irreducible representation
� and D(�)

µν (g) are the irreducible matrix elements, µ or ν is an index enumerating the basis.
Supposing that ψ is one of the reducible basis vectors of G, an irreducible basis might be
obtained by applying

P �
µ ψ = (

ψ�
µ · ψ

)
ψ�

µ . (D.3)

If
{
ψ�

ν

}
is the basis for the irrep � then

P �
µνψ

�
ν = ψ�

µ . (D.4)

Let us construct irreducible tensors U 1�
qµ from the operators {Sa, Sb, Sc, Sd} forming the nearest

environment of the central site. The transformations of one of the given spins under the
elements of the group D4 are

ESa = Sa, C4Sa = Sd, C2
4Sa = Sc, C3

4Sa = Sb,

Cx
2 Sa = Sb, C

y

2 Sa = Sd, C ′
vSa = Sa, C ′′

v Sa = Sc,

that together with (D.1) give immediately the irreducible tensors U 1�
qµ of the one-dimensional

representations:

U
1A1
q1 = NA1(Sa + Sb + Sc + Sd), U

1A2
q1 = 0,

U
1B1
q1 = 0, U

1B2
q1 = NB2(Sa − Sb + Sc − Sd).

To find the irreducible basis for the two-dimensional representation E, we construct the
projection operator P E

1 and then apply it to the spin Sa that yields

U 1E
q1 = NE(Sa + Sb − Sc − Sd).

Using the shift operator (D.2) and acting according to the rule (D.4) we obtain the second
irrep basis vector

U 1E
q2 = NE(Sa − Sb − Sc + Sd).

We choose the coefficients N� (� = A1, E) so that the Hamiltonian written through the
irreducible tensors coincides with the initial spin operator form.
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It is not always possible to construct all irreducible bases from one chain. The theory
says that one has to choose another starting function. In a computer realization, therefore, we
build all chains generated by all vectors of a reducible basis:

ĝψi =
∑

j

Dji(ĝ)ψj , (D.5)

and form the matrix X̂� from the chains

X̂�
ji = N�

∑
g

D�
µµ(ĝ)Dji(ĝ). (D.6)

The rank of this matrix

C� = 1

[�]

∑
g

χ(g)χ�(g)

determines a number of linear independent columns, where the character χ(ĝ) = ∑
i Dii(ĝ).

After these columns are established, orthogonalized and normalized with the help of the
Schmidt–Gram procedure we get the first C� columns of the transformation matrix T̂i,�µ.
By running over all irreducible representations and repeating the basic steps in the approach
we obtain the square matrix of corresponding similarity transformation onto the symmetry
adapted basis:

ψ�
µ =

∑
i

T̂i,�µψi.

As an example we calculate T̂
(1)
S12S34,�µ for the nearest-neighbour environment of the central site.

The characters of three-dimensional representation can be read off from the 3 × 3 matrices
D(1) given in section 3. We thus obtain

E C4, C
3
4 C2

4 Cx
2 , C

y

2 σ ′
v, σ

′′
v

χ 3 −1 −1 −1 1

whence we conclude D(1) = D(1B1) ⊕ D(1E). A direct calculation of X̂� matrices from
equation (D.6) yields

X̂
B1
ji = 1

8

∑
g

χB1(ĝ)D
(1)
j i (ĝ) =




1
2

1
2 0

1
2

1
2 0

0 0 0


 ,

X̂E
11 = 2

8

∑
g

DE
11(ĝ)D

(1)
j i (ĝ) =




1
4 − 1

4

√
2

4

− 1
4

1
4 −

√
2

4√
2

4 −
√

2
4

1
2


 ,

and

X̂E
21 = 2

8

∑
g

DE
21(ĝ)D

(1)
j i (ĝ) =




1
4 − 1

4

√
2

4

− 1
4

1
4 −

√
2

4

−
√

2
4

√
2

4 − 1
2


 .
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By noting that ranks of the matrices equal to unity, we find finally via the Schmidt–Gram
procedure the transformation matrix T̂

(1)

SαβSγη;�µ:

|1M;B1〉 |1M;E1〉 |1M;E2〉
|01; 1M〉 1√

2
1
2

1
2

|10; 1M〉 1√
2

− 1
2 − 1

2

|11; 1M〉 0 1√
2

− 1√
2

.

Appendix E

For the reader convenience we give the character table of the group D4

D4 E C4, C
−1
4 C2

4 Cx
2 , C

y

2 C ′
v, C

′′
v

A1 1 1 1 1 1
A2 1 1 1 −1 −1
B1 1 −1 1 1 −1
B2 1 −1 1 −1 1
E 2 0 −2 0 0

and the matrices of double irreducible representation taken in the basis xy (see [32], for
example)

D(E)(E) =
(

1 0
0 1

)
, D(E)(C4) =

(
0 −1
1 0

)
, D(E)

(
C2

4

) =
(−1 0

0 −1

)
,

D(E)
(
C3

4

) =
(

0 1
−1 0

)
, D(E)

(
Cx

2

) =
(

1 0
0 −1

)
, D(E)(C

y

2 ) =
(−1 0

0 1

)
,

D(E)(C ′
v) =

(
0 1
1 0

)
, D(E)(C ′′

v ) =
(

0 −1
−1 0

)
.
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